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It is shown that the linear and nonlinear exciting force coefficients, the added mass 
and radiation damping matrices, and the far-field wave amplitude (reflection and 
transmission coefficients in the two-dimensional case) can all be written as stationary 
values of well-defined functionals. As a consequence these quantities can be 
accurately determined with relatively crude approximations for the diffraction and 
radiation potentials. Numerical experiments confirm this feature : by inverting a 
4 x 4 real symmetric matrix the results obtained by Vugts (1968), who computed the 
added mass and radiation damping matrices for several different geometries, were 
recovered over the whole range of frequencies. 

1. Introduction 
An important problem in ocean engineering is the interaction between a floating 

structure and sea waves. As is well known, potential theory can be used in this case 
and the effect of viscous forces, when relevant, can be incorporated by some semi- 
empirical formulas. In  the context of potential theory one is mainly interested in 
global quantities, such as the exciting force coefficients due to the effect of linear and 
nonlinear potentials, the added mass and radiation damping matrices, the far-field 
wave amplitude (reflection and transmission coefficients in the two-dimensional 
case), and the drift-force coefficients. 

These parameters are thought to depend slightly on the detailed features of the 
flow field, but existing methods to  determine them do not take advantage of this. On 
the contrary, the widespread tendency seems to  be to reconstruct the pressure and 
flow fields and only afterwards, by integration, to determine these quantities. 
Relevant examples are the Green-function method, where the potential field is 
computed on the body's surface by solving an integral equation, or the hybrid 
element method, where it is essentially computed in a finite portion of the fluid 
domain. 

In  the present paper the mathematical formalism of the hybrid element method is 
used to show that all the above-mentioned quantities can be written as stationary 
values of well-defined functionals. As a consequence, a relatively crude approxi- 
mation for the potentials (order-Serror, S 4 1) provides a much better approximation 
for these quantities (order-S2 error). Obviously, as in all variational methods, good 
results depend on judicious choice of the trial function. I n  the case under analysis this 
function should represent some gross features of the flow field and i t  seems 
convenient to take it as a proper linear combination of elementary singularities 
(poles, dipoles, vortex lines), placed within the body. As is well known, these 
singularities can imitate not only the overall behaviour of the fluid flow but also, if 
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properly placed, some local features such as, for example, the 'rotation ' of the fluid 
around sharp corners. 

In this sense the present variational approach leads to a numerical method that is 
a blend of finite-element and Green-function methods. The mathematical formulation 
is taken from the former and the representation of the potential as linear 
combinations of elementary singularities from the latter. It must be stressed, 
however, that  the essential point here is to  show that the above-mentioned quantities 
can be computed by means of a variational method. 

In  $2 of this paper the general idea of the variational method is demonstrated for 
a three-dimensional non-homogeneous problem, simulating an arbitrary Nth-order 
problem obtained by means of a perturbation technique. To show the power of the 
method one must compare its performance to some well-known results in the 
literature. For this reason the remainder of the work is restricted to two-dimensional 
linear problems. In  $3 the variational method is applied to  this class of problems, but 
some modifications in form, not in essence, are introduced. In  this way some more 
subtle theoretical results, with practical implications, can be deduced. Section 4 
presents and discusses numerical results. 

2. The variational method 
The nonlinear free-surface potential flow problem can be transformed, by means 

of a standard perturbation technique, to an infinite sequence of linear non- 
homogeneous problems. If E is the small amplitude parameter, the potential 4 can be 
expressed by an asymptotic series of form q5 = X$=l sNq5N, where $ N ( ~ ,  y, z ,  t )  is called 
the N-order potential. For harmonic waves i t  is the solution of the following set of 
linear equations : 

(i) V2#, = 0, (2 . la)  

a t  z = 0, (2.1b) 

(iii) 9q5N * nlaB = b,, (2.1 c )  

a@N - (iv) --0 a t  x = - h :  az ( 2 . 1 4  

(v) Radiation condition. (2.1 e )  

In  (2.1) w is the non-dimensional frequency for this N-order problem, ilB is the 
body surface, z = 0 the undeformed free surface, z = - h the sea bottom, b, the N- 
order body boundary condition and f N ( x ,  y) the free-surface exciting term. The 
appropriate radiation condition will be discussed later but the linear radiation 
condition is given by the well-known expression 

Before (2.1) is analysed it is worth introducing some mathematical definitions and 
results. Problem (2.1) will be addressed in $2.2 and the variational method in $2.3. 
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2.1. Mathematical background 
Let S be a smooth surface (cylindrical or spherical, for example) dividing the fluid 
region into two parts : subregion A ,  inside S, with finite volume and where the body 
is placed ; subregion A ,  outside S, with infinite size. In the finite fluid region A one 
may consider the class of functions with 'finite energy',t where the natural norm 
(energy norm) is given by 

(2.3) 

This class of functions is a Hilbert space denoted by WF)(A) in the specialized 
literature, see Sobolev (1963) and Ladyzhenskaya & Ural'tseva (1968). If YE W!$(A), 
let Y be its extension to the region A defined in the following way : Y = Y on S and 
P i s  the solution of (2.1 a, b,  d )  and (2.2)' with fN = 0, in A.  The function Yis uniquely 
defined in terms of its boundary value Yon S and, furthermore, being the solution 
of a Dirichlet-like problem, it has continuous derivatives of all orders in J, see 
Sobolev (1963, p. 93). If a /& indicates the derivative in the direction of the normal 
to S ,  pointing outwards from A ,  then aF/an should depend linearly on the boundary 
value of Y. In this way a linear operator D can be introduced such that 

(2.4a) 

An explicit expression for D( . ) will be presented in $3, although it must be pointed 
out here that the derivative aY/an does not exist, in a strict sense, on the boundary 
surface S ,  for an arbitrary YE WL1)(A). It can be defined only in a weak sense, namely 
by means of a linear functional 

defined in WF)(A).  This linear functional is however continuous in W!jl)(A) and 
satisfies the following relation : 

(2.46) 

In (2.4b), C, is a constant independent of (9;  Y) and since this inequality will be 
used later a sketch of its proof is given here. Consider a region c LT bounded by 
S and by a smooth surface S ,  on the interior of X. If 11 . I /  , is the energy norm in 2, then 

t It can be shown that (2.3) is equivalent to 

where F is the free surface of A and w > 0, see Sobolev (1963). Obviously \\$I\; is the sum of kinetic 
and potential (gravity) energy in A .  For w = 0, 11#11, is a seminorm and this is the reason why (2.3) 
has been used. 
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since (6; Y) have derivatives of all orders in K.j- From Green's theorem and (2.6) (see 
below), it follows then that 

I r r  I 

and since solutions of Dirichlet-like problems can be bounded from above by the 
norm of their boundary values (see, for example, Ladyzhenskaya & Ural'tseva 1968, 
chapter 3), then one should have 

{II6II,; I I n J  G C,{II4II; I1 YlIl. 
From these last two inequalities (2 .4b)  follows a t  once with C, = C,C:. 

A symmetry property of operator D can also be demonstrated. In fact, applying 
Green's theorem to a pair {$; 9 already defined and using (2.2) the following 
identity can be obtained : 

- -  
where (2 .4a)  and the equality {#; vl) = {$; vl) on S have been used. In  this way a 
particular extension of elements of W$')(A) to  the whole fluid region has bccn 
introduced and to complete the mathematical background some other results will be 
needed. The first result is one of the so-called Sobolev's imbedding theorems (see 
Sobolev 1963) that, in the present context, can be stated as:  if ($; Y )  E W,(A) and &4 
is the boundary surface of A (or part of it) then, 

The above relations are necessary to derive some properties of the bilinear form, 

that appears naturally in the analysis of (2.1), see $2.2. In (2 .7) ,  F is the free surface 
of A and from this expression and (2.5) it  follows a t  once that G( . ; . ) is symmetric, 
that is a($; Y) = G ( Y ; $ ) .  Furthermore this bilinear form is well defined in Wil)(A) 
and from (2.3), (2 .4b )  and (2.6) the following inequality is obtained: 

I W ;  Wl G cll4ll llYll> (2.8) 
where, again, the constant c is independent of ($; Y). 

2 . 2 .  The weak equation 
Since K has a regular geometry (it is bounded by the horizontal free and bottom 
surfaces and by a cylindrical or spherical surface S )  the solution of (2.1 ) in A can be 
determined by analytical means (series expansion, for example). For this reason the 
formal solution of (2.1) in this region will be considered first. 

Let, then, $$" be a particular solution of (2.1) in the region A satisfying two 
restrictions : first, #$" = 0 on S; second, i t  has a proper expression at infinity. Besides 
an eventual outgoing-wave-like behaviour a t  infinity$ this latter condition may 

t This result can be verified directly from the series expansion for (6; Y) used in $3. 
1 A particular solution with a proper behaviour at infinity (bounded, etc ) can be determined by 

integration. An homogeneous solution, which satisfies ( 2 . 2 ) ,  may then be added to ensure that  
$? = 0 on A'. 



A variational method for wave radiation and diflraction 139 

imply a wavenumber correction, proportional to wave amplitude squared, for N > 
3. Notice that here the frequency is assumed given and so Stokes' correction should 
be used for wavenumbers. With these two restrictions the function q5r) can be 
uniquely defined and, since it can be obtained by analytical means, it will 
be supposed known from here on. Since q5g) = 0 on S then, by construction, 
q5N = gN+q5F) on A ,  where gN is the extension of q 5 N )  defined in A ,  to the region 
2. But a$,/an must be continuous on S (being the solution of Laplace's equation) 
and from the above expression and (2.4a) it follows that 

Notice that 4, is not an arbitrary element of @')(A) since, being the solution of (2.1), 
it has derivatives of all orders in S. Thus agN/an exists, in a strict sense, and 
expression (2.9) is meaningful for the solution 4,. 

Consider now the solution $N of (2.1) in the finite fluid region A .  It must satisfy 
the field equation (2.1 a )  in A ,  the boundary conditions (2.1 b)  on the free surface F 
ofA, ( 2 . 1 ~ )  on the body surface and (2.9) on S. Multiplying the field equation by an 
'arbitrary ' function Y, defined in A ,  and integrating by parts one obtains, with the 
help of the boundary conditions, the identity G(q5,; Y) = V,(!P), where G( .;.) is 
given by (2.7) and 

(2.10) 

Notice that VN( .)  is a continuoust linear functional on Wp)(A)(lVN(Y)l < VN )I Yll) 
and a t  this point the diffraction problem (2.1) can be formulated in a weak form, 
namely to determine a q5N E Wll)(A) such that 

G ( $ N ;  Y) = VN( !P), all Y E  "?)(A). (2.11) 

In the next section it will be shown that a variant of (2.1 1) can be associated with 
the stationarity condition of the related Lagrangian. This gives a clear physical 
meaning for weak equations of form (2.11). 

If { w j ; j  = 1,  . . . , S} are the rigid-body modes, denoted by surge, sway, heave, roll, 
pitch and yaw in the specialized literature, let (q5$;j = 1,. . . , S }  be the related 
radiation potentials. They are solutions of (2.1) with { b ,  = vj;  f N  = 0} and so also 
satisfy a weak equation of the form 

G(q5i; Y )  = q( Y), all Y E  W$l)(A), 
with F( . )  given by 

(2.12) 

(2.13) 

Let Qi, , be defined by the expression 

Qj,N = ?(+iv)* (2.14) 

From (2.13) one can check that if $ N  represents the N-order diffraction potential, 
then Qj, represents the corresponding exciting force coefficient on the j-mode. If, on 
the other hand, q5, = is a radiation potential, then the real and imaginary parts 
of Qj, determine, apart from an eventual factor o, the coefficients of the added mass 

t For this it suffices to assume that { b , ; f , }  are square integrable on aB and F ,  respectively. The 
square integrability of a~t,p,/an can also be proven from the analytical properties of solutions of 
Laplace's equation. 
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and radiation damping matrices. Therefore (2.14) embodies almost all global 
coefficients needed to  analyse the interaction between a floating structure and sea 
waves. A small modification of the present formulation enables one to express, in a 
similar way, the far-field wave amplitude (and so the drift force coefficients). This 
analysis, however, is postponed until the next section. 

2.3. The variational method 
Let 
by the expression? 

; . ) be a functional defined in the Cartesian product space Wl1)(A) x Wp)(A) 

(2.15) 

It is an easy task to check that Q,, = TN(q5,; $ N )  and, furthermore, that I$,(. ;. ) 
is stationary at ( q 5 j ; # N ) ~ W g ) ( A )  x Wr)(A). I n  fact, from (2.11), (2.12) and (2.14) i t  
follows that Qi,N = V,(#,) = G ( $ j ; $ N )  = VN(&). Also, the stationary condition for 
(2.15) implies the weak equations (2.11) and (2.12) and, reciprocally, if the weak 
equations are satisfied then the variation 6$N(#j;  $ N )  is null. 

can be obtained directly from (2.15) by determining the 
stationary value of qN(.  ; . ) restricted to a finite-dimensional space W, c Wp)(A) .  
This procedure is analogous to using a Rayleigh quotient to determine approxi- 
mations for the natural frequencies in a vibrating system. It is an easy task to 
check that Z $ N ( .  ;. ) will be stationary at a (&,; $,,,)E W, x W, such that 

An approximation for Qi, 

G ( # N , a ;  K )  = VN(%),  all K € W a  C Wg)(A),l 
(2.16) 

will be denoted by QIYL and it is then 

(2.17 a) 

Some alternative formulas for Q$:L are useful. They can be obtained from (2.15) 

(2.17b) 

G($~ , , ;  u,) = ?(%), all K E  W, C w ~ ) ( A ) .  J 
The corresponding approximation for Q,, 

given by the expression 
QjYk = q N ( # j , a ;  # N , a ) *  

and (2.16) and are written as follows: 

Q):k = V~($j,a) = ? ( + N , a )  = G ( # N , a ; $ i , a ) .  

If the exact solutions ( # N  ; #i) are expressed in the form 

(2.18) 

(2.19) 

then 6 gauges the error of the approximations ( # N , a ;  in the energy norm. Some 
important relations can be obtained from (2.11), (2.12), (2.16) and (2.18). In  fact, 
taking Y = Y,E W, in these first two expressions and subtracting them from (2.16) 
one obtains 

G ( S $ N ;  Y,) = G(6#,; Y,) = 0, all Y,E W,. (2.20 a )  

Taking also Y = (~94~; 
with the help of (2.20a): 

in (2.11), (2.12), the following identity can be derived 

(2.20 b) 

t Strictly speaking 4N( .  ;.) is defined only for a pair (6; vl) such that G ( $ ;  Y) += 0. If, however, 

G(6#j; &#N) = b ! ( ' # j )  = y ( s # N ) .  

G($ , ;$ , )  = 0 then l$N($j;$N) is well defined and zero, see ( Z . i i ) ,  (2.12). 
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The intention now is to compute the error in the approximation Qj:k. From the 
definition of Qi,N and (2.18) one obtains 

Using (2.17b) and (2.20) in this last expression i t  can be checked that 

= Qj:L + G ( V j  ; w,,. 
With the help of (2.8) and (2.19) the following inequality can then be derived: 

IQj,N-QjaLl = IG(Wj;Wiv)I G CII@jII IIS$NII G CS2. (2.21) 

This last expression shows explicitly that if the exciting force coefficients are 
approximated by (2.17) then an error 6 on the potentials implies an error of order cY2 

in the approximation for Q , , N .  Or, in short, a relatively crude approximation for 
the potentials can provide a much better approximation for the exciting force 
coefficients if they are computed by means of (2.17). 

Two points should be observed here. The first is that to determine an 
approximation for the N-order exciting force coefficient, the potential $ N  need not be 
computed. It suffices to  know an approximation $ j ,a ,  for the radiation problem, to 
obtain = VN($j,a). This is a trivial extension of the so-called ‘Haskind relations’? 
and this fact has been observed by several researchers (see, for example, Molin 1979; 
Lighthill 1979; Aranha & Pesce 1986). I n  the present formulation, this kind of 
Haskind relation has an error of order S2, where 6 is defined by (2.19). So not only 
need $ N , a  not be computed but also the error in Qj:L will be much smaller than the 
one that would be associated with + N , a .  

The second point to be observed is that it has been called to the author’s attention 
that Bessho (1968), in Japan, has derived a similar variational method. There are two 
basic differences (as well as the formulation) between his method and the present one. 
First, Bessho’s approach is derived for linear (first-order) problems, where f N  = 0;  
second, the trial functions in Bessho’s method must satisfy all conditions in (2.1), 
apart from the boundary condition on the body surface. It turns out, then, that  an 
eventual extension of Bessho’s approach, to cover higher-order problems, would 
need a Green function for the non-homogeneous problem ( f N  4 0). Since fN(x, y) 
changes with the wave incidence angle, Bessho’s approach may prove impractical to 
use in higher-order problems. I n  this context the present method is more general in 
scope and more flexible in application, since the trial functions can be arbitrary 
elements of Wil)(A). In particular, simple elementary singularities (poles, dipoles and 
vortex lines) for unbounded fluid can be used in the present formulation, which can 
make its application easier. However, the numerical experiments that have been 
analysed here were restricted to linear two-dimensional problems in deep water, since 
there are abundant results in the literature for this particular case. For this class of 

t The weak equations (2.11) and (2.12) show quite clearly that Haskind’s relations are nothing 
more than the ‘reciprocity relations’ in solid mechanics, known for more than a century. 
Mathematically they are a consequence of the symmetry of G( . ; . ). 
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problems the analytic expressions for free-surface elementary singularities are 
relatively simple and have been used in the present work. In this case, the present 
method, although using a different formulation, leads essentially to the same result 
that would be obtained using Bessho’s approach. 

3. Linear two-dimensional problem 
In this section the variational method will be applied to a cylindrical body, 

infinitely long in the 2-direction and symmetric with respect to the plane y = 0. If b 
is the half-beam of the body and b 2 b,  let the plane y = bbe the surface S introduced 
in $2, see figure 1.  

The finite fluid region A is interior to S(y < 6) and the region d coincides with the 
infinite strip y > 6. Since the linear radiation and diffraction problems can be 
separated with respect to y into even ( + ) and odd ( -)  problems, functions defined 
in W!&4) are assumed to be extended to region y < 0 in an even or odd manner, 
preserving continuity on y = 0. 

The function Y(y, z ) ,  the extension of YE Wil)(A) to the region K, is the solution 
of the field equation, bottom, free-surface and radiation conditions and satisfies the 
equality Y(6, z )  = Y(6, z )  on S. A general solution of this set of equations in the strip 
y > bcan be obtained by the method of separation of variables, which leads naturally 
to the infinite set of functions 

( 3 . 1 4  
f n ( z )  =F,cosK,(z+h);  --w*=K,tanK,h; n =  1,2,  .... 

It is not difficult to check that (f,(z);n = 0,1,. . .>, being the solutions of a 
Sturm-Liouville problem, is a complete orthogonal set of functions. Furthermore, 
the normalizing constants Fn can be chosen in such a way that, 

fa(z) = FacoshKo(z+h); w2 = KatanhKoh, 

(3.1 b )  

where 6,, is the Kronecker &function. Introducing now the linear functionals 

L,(!.P) = Ih  Y(&z)f,(z)dz; n = 0 , 1 ,  ..., 

the extension p(y, z )  of YE WF)(A) can be written in the form 

n-1 

From the definition ( 2 . 4 ~ )  i t  follows that 

a 

D(Y)=-  ayl = xoLa(y)fo(z)-  c K n L n ( y ) f n ( z ) >  (3.4) 

where (3.4) is an explicit expression for the operator D. Notice that for IyI > 6 the 
coefficients in the series (3.3) go to zero exponentially when n+ 00 and so Y(y, z )  has 
derivatives of all orders in the region (yI > 6. Since K , / n  = 0(1 )  when n-t oc), the 

aY y-6 n-1 
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FIGURE 1. Geometry for the two-dimensional problem. 

series (3.4) is, in general, non-convergent. This exemplifies why D( !Pj can be defined 
only in a ‘weak sense’, see $2.1. Putting (3.4) into (2.7) one obtains? 

I 

The reaE bilinear form G,(. ; . ) will be used later in this section. It is convenient to 
introduce, for the linear two-dimensional problem, the following notation : {qbj(y, z )  ; 
j = 1, . . . ,4) represent the radiation potentials, namely surges (vl = m,J, sway (w2 = 
mu),  heave (v8 = n,) and roll (v,, = -zn,+yn,). Also {qb,(y, z ) ; j  = 5, 6} represent the 
even and odd parts of the diffraction potential (v5 = v6 = 0). If T and R are the 
transmission and reflection coefficients, respectively, then let {Ao, ; Ao, ; 8,,j = 1,  . . . , 
6) be defined by the expressions 

AO,,=~(T+R)eziKo6; 6 , = + 1 ,  

Ao,6 = $(T-R)eZiKo6; 6, = - 1 ,  (3.6) 

’ . .., 

1 6 5 -  - 0 ;  j= 1,2,3,4.  

With (3.6) it is not difficult to check that the far-field behaviour of {$r(y,  z )  ; j  = 1 
6} is given by 

$,(y,z) - WO,,+, 18 5 )  e%(It-@ + Q 2 5  (e-iKo(IyI-6) - eiKo(I~I-6) )Ifo(4,  ( 3 . 7 ~ )  

with Lo($,) =A,, ,+@,.  (3.7b) 

Owing to the presence of the incident wave, the potentials (q$,(y, z )  ;j = 5,6} do not 
have a pure radiating behaviour at infinity. In these cases the parcel 

q 2 1  (e-i~o(lvk-6 - ei&(ltd-s) )f&) 
t If the water depth is infinite, the series summation in (3.3), (3.4) and (3.5) is transformed into 

integrals in K = K,,. 
The surge motion, although not strictly two-dimensional, is considered here for completeness. 

Also, the incident wave has been multiplied by the phase exp (X,, 6) to make the notation more 
succinct, see ( 3 . 7 ~ ) .  
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plays the same role as q5g) did in $2 although f, = 0 here. With this observation one 
can use directly (2.10) and (2.11) to obtain, with the help of (3.5) and (3.7), the 
following weak equations ( b ,  = vj; fN = 0):  

GA@j ; Y )  = XO(A0,j - tsj ,  Lo( Y )  + (1 - ISjl) qc u), 1 
(3.8) 

So far the general procedure outlined in $2 has been particularized to the linear 
two-dimensional problem. There is one point, however, that was left aside there and 
must be worked out here: to  show that the far-field wave amplitudes, Ao,j ,  can also 
be determined by a variational method. I n  order to  do so one must separate the 
ondulatory part of Y(y, z) ,  proportional to  Lo( Y )  (see (3.3)), from its evanescent one, 
motivating the introduction of the following linear subspace of W!$(A) : 

(3.9) 

Elements of We(A) will be designated by a suffix e, since their extensions to A are 

We@) = (5 E Wp(L4) : Lo( y,) = 0). 

evanescent. With the help of the auxiliary functions 

(3.10) 

every Y E  Wg"(A) can be uniquely written in the form 

Y(Y, 2 )  = Lo( u) q' (Y, 2) + K(Y, 2) ; U,(y, 2) E We(A), (3.11) 

where the + (or - )  sign should be used for an even (or odd) function of y. For the 
'evanescent ' function Ye the kinetic and potential (gravity) energies can be defined 
in the whole fluid domain and, in particular, i t  can be easily checked that 

G ( q ;  ly) = G l ( 5 ,  u,) = 1,- (.y,).d.--.'i,, e f l m >  (3.12) 

where ( A ,  ; F,) are, respectively, the entire fluid domain and the corresponding 
free surface. Notice that G I ( .  ; . ) is a real bilinear form and for a real Ye the quantity 
$G( Ye ; q) is the Lagrangian, if gravity is the only source of potential energy. These 
are important consequences of the split between the ondulatory and evanescent 
parts of Y and they will be used later in this section. 

Using (3.11) in (3.8) and a similar expression for +,(y,z) (see (3 .7b ) ) ,  the final 
solution can be expressed in terms of intermediate weak solutions defined in We(A). 
In order to present this result in a more compact form, some definitions are needed. 
Let then 

(3.13) 

and consider the set of weak equations : to  determine {q5j, E We(A) ;j = 1,  . . . ,6> such 
that 

Gl(q5j,e; q) = b(U,), all qcEW,(A), (3.14) 

with { ?(. ) ; j  = 1,  . . . , S} given by (3.8), (3.13). If now 

(3.15) 
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then it can be checked, after some algebra, that 

$jb, 2) = @ n , j  + ta j )  P' ( ~ 9  2) + ( 1  - Iajl) $j, e b ,  2). (3.16b) 

The coefficients 8, have been defined in (3.6) and it should be observed that the 
solution of the six original potential problems has been transformed, essentially, into 
the solution of the six real weak equations (3.14). As will be shown next, these 
equations have a very neat physical meaning. 

To make this point clear, an analogy with a linear discrete system, with restoring 
matrix Ki, and generalized coordinates q,, seems worthwhile. If this discrete system 
is under the action of external conservative forces q., then the total potential energy 
is given by 

where the first parcel is the restoring potential energy and 2 p3 qi is the work done by 
the external forces on the system. Consider now the general problem related to (3.14). 
Here the restoring forces, due to gravity, have potential energy 

r 
u($j, e) = &2 ($j, e)* dFb,. 

J F m  

In  thej-radiation problem, the work done by the fluid pressure on the body is given 
by 

Y($j,,e) = /2B$j,evjdaB, 

and so the work done by the body on the fluid is - F($,,e). It follows that the total 
potential energy for the j-problem is given by the expression 

( 3 . 1 7 ~ )  

A similar interpretation, although in a less direct way, is also possible for 
the diffraction problem, j = 5,6.  In fact, in this case the exciting terms are the fields 
q* (y ,  z )  and the work done by them on the fluid is given by 

/ / ~ Q ' . v $ j , e d a - " 1 S y i a , . ~ = G l ( q * ; $ j , e )  = - ~ ( $ j , e ) T  j = 5 , 6 .  

The kinetic energy, associated with the (evanescent) j-solution, is clearly given by 

(3.17b) 

and, with the help of (3.12) and (3.17a, b ) ,  the Lagrangian can be written in the form 

p j ( $ j , e )  = T($j,e)-uj($j,e) = $iGl($j,e; $j,e)-  Y($j,e). (3.17 c )  
In a discrete system, oscillating harmonically in time, one has qj( t )  = qi,neiWt and so 
9 = 9 ( q j ;  q j )  = 9 ( q i , o ) .  In  this circumstance Lagrange's equation of motion reduces 
to  i39/i3qi,, = 0, or, in short, to the stationary condition for the Lagrangian. In a 
continuum system the field q5j, Jy, z )  takes the place of the discrete variables {q j ,  o }  and 
Lagrange's equation of motion is reduced to the stationary condition of ( 3 . 1 7 ~ ) .  The 
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weak equation (3.14) is just this condition and this gives a physical meaning t,o this 
equation. 

For future reference some results concerning the functions pk (y, z )  should be 
derived here. I n  fact, if the real parameters Aj, are defined by the expressions 

A,, =Gl(+j,e;+t,e) = &(#l,e) = Ill(#f,e)? j , i =  1 , * * - , 6 >  (3.18) 

then the following identities can be derived : 

(3.19a) 

(3.196) 

The first one follows from (3.15) and (3.18), and to deduce (3.196) one observes, from 
(3.13), (3.14) and (3.15) that G,(p'; U,)  = 0, for all KEW,(A).  From this last 
equality, and (3.13), (3.15) and (3.18), one obtains (3.196). 

Let now {(mjl ; d j l ) , j ,  1 = 1, . . . ,4} be the elements of the added mass and radiation 
damping matrices, {Q,  ; 1 = 1,  . . . ,4}  be the exciting force coefficients, due to the linear 
diffraction potential, ;j = 1, . . . ,4} be the radiation far-field wave amplitude and 
{ T ; R )  be the transmission and reflection coefficients. In the interaction between a 
floating structure and sea waves one is mostly interested in computing the 
coefficients {m,, ;dj l ;  Ql;Ao , , ;  T;R} since, with them, the oscillatory motion of the 
structure, its drift in the horizontal plane or even its performance as a breakwater 
etc., can all be evaluated. 

Since (mil ; djl  ; Q l )  are defined by means of integrals over the body surface and only 
half of i t  is considered here, the integrals should be multiplied by A,, = 1 + ( - l)j+', 
to make the final result correct. From the basic definitions 

r 

d j z ( w )  = ~ I ~ , ~ ~ ~ ~ ( l m $ , ) a , d 2 8 :  j,Z= 1 ,..., 4, 

QI(w)  = L I , , ~ ~ ~ $ ~ V , ~ ~ B ;  j = 5,6,Z = 1, . .  .,4, 

and (3.16), the following relations can be derived : 

(3.20 a )  

(3.20 6) 

(3.20 c )  

(3.20 d )  

(3.20e) 

(3.20f) 
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From (3.19) and (3.20) it follows that {mil;di l  ; Q l ;  A o , j ;  T ;  R}  can be determined 
directly once the real coefficients {Aji; j, I = 1 , .  . . , 6 }  are computed (recall that 
p’(y,z) are known, see (3 .10)) .  As is clear from (3.18), Ai, is a stationary value 
of the functional Z$( .;.), see (2.15), in the Cartesian product space “,(A) x We@) .  
All quantities of interest can, then, be computed by a variational method. 

Although the motivation for splitting the functions YE Wy)(A)  into ‘ondulatory ’ 
and ‘evanescent ’ parts was to  obtain a variational method to compute {Ao,,; T ;  R),  
some by-products of this procedure should be emphasized here. In  fact, not only are 
the weak equations (3.14) real, which makes the numerical solutions more economic, 
but. also these equations can then be interpreted in a very clear physical way. 
Furthermore, it makes it possible to write mil;d, l ,  etc. in the form (3.20) and, from 
the structure of these formulas, some interesting results can be derived. 

The first is that there are several identities, known as ‘reciprocity relations’ and 
‘energy theorems ’, associated with both the diffraction and radiation problems. 
Relevant examples are : energy conservation JRI2 + (T(2 = 1 ; Haskind relations 
between the exciting forces Q1(w) and the coefficients A0, , (w);  the equality between 
the phases of the even (or odd) coefficients Ao, l ,Ao,3  (or Ao,2,Ao,4) ,  etc. All these 
relations can be obtained directly from (3.20) and, furthermore, they depend only on 
the structure of these expressions. In particular, if the potentials are approximated 
by any numerical method then, no matter how bad the approximations are, these 
identities will be exactly satisfied if (3.20) is employed. Or, in short, the energy 
theorem, Haskind’s relation, etc., cannot be used to assess the discretization error of 
the approximation, a result already derived by Aranha, Mei & Yue (1979) in a less 
direct way. This fact is strictly valid only if (3.20) is used but it strongly indicates 
that the checking of these identities should never be taken seriously as a convergence 
criterion. 

Another interesting conclusion can be derived from (3.20 b ) .  This expression 
shows that not only the radiation damping matrix is positive semidefinite but, in 
fact, i t  is always singular. A physical explanation of this result is provided by 
(3 .20d):  if, for example, ([,;&) are the non-dimensional sway and roll amplitudes 
and 6 2 / 6 4  = - K(p- ) /&(p- ) ,  then the far-field wave amplitude generated by this 
coupled motion is zero. 

A similar conclusion concerning the sign of the added mass matrix is not possible, 
in general, but for an important class of geometries an affirmative answer can be 
obtained. Let a W-body be the class of bodies whose projection on the free-surface 
coincides with its water line. The one shown in figure 1 is not a W-body but those 
shown in figure 2 are. For a W-body a finite fluid region A can be defined without a 
free surface (take b = 6) and, from (3 .5) ,  GI($; 4) is strictly positive in this case. From 
(3.19) and (3.20a) i t  follows then that the added mass matrix is positive definite for 
a W-body. A physically interesting discussion on negative added mass for a 
particular non-W-body can be found in Newman, Sortland & Vinje (1984). 

4. Numerical results 
The purpose of this section is to  discuss the numerical results obtained from the 

variational method and compare them with some obtained from more standard 
numerical procedures, Typical geometries (circular, rectangular and triangular, see 
figure 2)  in deep water will be analysed and the results compared to  Vugts (1968). In  
$4.1 attention is focused on the convergence of the method and, for this, poles are 
placed within the body in increasing number, imitating the well-known Green- 
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Even 
modes 

Odd 
modes 

Singularities Particular points 

0 Source 0 Sink F = Ellipse foci; i 0 = Geometric centre 

1 z-dipole - y-dipole C = Corner; ; M = Ellipse middle point 

---_ - 3 Vortex point - Inscribed ellipse 

FIGURE 2. Geometries analysed in this section and singularities used in the variational 
approximation. Vortex point at 0 simulates roll boundary condition (figure 36);  vortex point at 
C simulates corner's effect (figure 312, c ) .  

function method. Although convergence is relatively fast this procedure does not 
exploit the flexibility and intrinsic properties of the variational method. On one 
hand, this method allows all sorts of singularities - and not only poles - to be used 
simultaneously ; on the other hand, a variational approach works better if the chosen 
trial functions are able to imitate some gross physical features of the problem under 
consideration. In $4.2, some well-known features of the fluid flow around a floating 
body are discussed and some simple trial functions, that simulate such a behaviour, 
are then introduced. Their performances are analysed in some detail in $4.3, where 
rectangular cross-sections are studied, and in $4.4 numerical results obtained for a 
triangular cross-section are presented. Finally, $4.5 gives more results related to 
transmission, reflection and exciting forces coefficients. 

4.1. Convergence of the method 
To verify numerically the convergence of the method a sequence of approximations 
was constructed. Poles were spread over a line i3B* within the body, with length LT, 
and parallel to i3B. The number and position of poles have been defined in the 
following way: for the first approximation, two poles separated by L z ;  for the 
second, three poles separated by L2/2;  for the nth, 2n-' + 1 poles separated by 
L2/2n-'; etc. Since a function T,'(y, z) ,  to be defined in the next subsection, was used 
in all approximations, this construction generates a sequence of finite-dimensional 
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W (3x3)  (4x4)  (6x6)  (10x10) 
0.25 1.6920 1.7360 1.7497 1.7505 
0.50 0.8318 0.8641 0.8777 0.8785 
0.75 0.5906 0.6080 0.6231 0.6241 
1.00 0.5897 0.5896 0.6046 0.6057 
1.25 0.6560 0.6548 0.6727 0.6740 
1.50 0.6982 0.7098 0.7433 0.7537 
1.75 0.6481 0.7625 0.8147 0.8184 
2.00 0.6829 0.8131 0.8621 0.8649 

TABLE 1. Successive approximations for the heave added mass of a circle. w = (3(B/2g);; 
B = beam 

' 0 , 5  AO, 6 

w (3x3)  (4x4)  (6x6)  (10x10) (3x3)  (4x4)  (6x6)  (10x10) 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1.50 
1.75 
2.00 

-5.6 
- 15.2 
-23.3 
-28.5 
-30.8 
-29.6 
-27.7 

81.8 

-5.6 
- 15.1 
-22.6 
-26.7 
-27.5 
-24.9 
- 19.3 
- 12.8 

-5.5 
- 14.5 
-20.7 
-22.7 
-21.3 
- 17.9 
- 13.8 
-9.8 

-5.5 
- 14.4 
- 20.2 
-21.7 
- 19.6 
- 15.7 
-11.4 
-7.6 

7.4 
31.4 
68.6 

103.0 
128.0 
144.0 
155.0 
- 18.1 

7.4 
31.5 
69.3 

105.0 
131.0 
148.0 
160.0 
168.0 

7.4 
31.7 
70.4 

108.0 
134.0 
151.0 
162.0 
169.0 

7.4 
31.8 
71.1 

110.0 
136.0 
153.0 
164.0 
170.0 

TABLE 2. Successive approximations for the phase (degreTs) of the coefficients A o , 5 , A o , 6 ,  for a 
B/T = 8.0 rectangle. w = G(B/2g)', B = beam 

spaces {We,l t We,2 c . . . c We,n c . . . c We(A)} with dimensions (3 < 4 < . . . < 
gn-l + 2 < . . . < co}. Obviously the dimension of We, corresponds to the size of the 
real and symmetric matrix that must be constructed and inverted in the nth 
approximation. In  all numerical experiments the non-dimensional distance between 
aB* and i3B was 0.125, or 6.25% of the beam. 

Table 1 presents the results for the heave added mas8 of the circle and each 
approximation is identified by the size of the related matrix. The last column in the 
table agrees with Vugts (1968), the convergence of successive approximations being 
quite evident. 

For three different geometries (two rectangles and a triangle), similar results as for 
the hydrodynamic coefficients have been obtained ; see Peace (1988) for details. An 
example is given in table 2, where the convergence for the phases of the wave 
amplitude coefficients (& ;AO,J is shown, for a rectangle with beam/draught = 8.0. 
These results will be used later. 

For this particular sequence of approximations the following general rule can be 
derived: a (6x6 )  numerical solution gives a result good enough for practical 
purposes. This performance should be compared to the usual Green-function method, 
where a typical (25 x 25) complex non-symmetric matrix must, in general, be 
constructed and inverted, see Nestegard & Sclavounous (1984). As already 
mentioned, the approximations under consideration do not explore the flexibility 
and intrinsic properties of the variational method. The next subsection discusses this 
point, introducing more convenient trial functions. 
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4.2. Choice of convenient trial functions 
The potentials {cj i (y ,  z )  ;j = 1, . . . , 6} can be written in the form (3.16b) or, in a more 

A glance a t  (4.1) indicates that  the real function p+(y, z )  (or p- (y ,  z ) )  corresponds, 
apart from a constant factor, to  the even (or odd) part of the diffraction potential. 
In order to make the notation more succinct they will be called ‘diffraction 
potentials ’. The interesting aspect of (4.1) is that  the radiation potentials have been 
naturally split into two parts : the first proportional to  the ‘diffraction potentials’ 
p’(y, z ) ,  with zero normal derivative on the body surface; the other a real evanescent 
function q$, .(y, z )  satisfying the mode boundary condition (surge, sway, heave, roll) 
on the body surface.? Appropriate trial functions should then simulate the gross 
behaviour of {p’(y, z )  ; $,Jy, z ) , j  = 1,. . . ,4}, whose physical meaning has been just 
discussed. 

Consider first the diffraction potential p*(y, z) .  Part of these functions are given 
respectively by the even and odd components of the incident wave {cos&y; 
sin KO y> f o ( z ) .  Furthermore, from the Froude-Krilov approximation, 

p’(y,z) - {COS&Y;SinKoy}f,(z) 
in the limit w + O  and, when w+m, both p * ( y , z )  and {cosKoy;sinKoy}fo(z) are 
essentially zero for z < 0. It seems desirable, then, to use trial functions that can 
recover, a t  least, the pure incident wave behaviour. This can be done if the weak 
equations (3.14) are solved, for j = 5,6, in the absence of any obstacle. In  this case 
it is an easy task to show that {g5j, e(y, z )  ;j = 5,6} are proportional to the functions 

C(Y,~) = (cosKoy-cosKob)fo(z), ] 
c ( y ,  z )  = (sinK -gsinKo b ) f o ( z ) .  

O y  b 
These trial functions simulate the correct behaviour of the evanescent diffraction 

potentials {cjj,~(y, z);j = 5, 6} in the limits w + O  or w +  co and it is not difficult to 
check, placing (4.2) into (3.20), that they recover the correct asymptotic behaviour 
of (R(w) ; T(w)}  in these limits. I n  the intermediate range of frequencies the use of 
T;(y, z )  is not sufficient to provide a proper result. The performance can, however, 
be improved if other trial functions, to be derived next, are employed. Obviously the 
same T; (y, z )  should also be used for radiation problems, since these potentials 
depend on p’(y, z ) .  

To analyse the radiation potentials {$,, &, z )  ;j = 1, . . . ,4} it seems natural to 
consider first a circular cross-section. I n  the limit w + O ,  surge and heave motions 
represent a body dilatation and they can be simulated by a pole placed a t  the circle 
centre. Incidentally, it is not difficult to show that, for any surface-piercing body, the 
correct asymptotic behaviour of heave added mass in the limit w + 0 can be recovered 
by a single trial function with a In r-type singularity. In  the low-frequency limit the 
sway motion of a circle is exactly represented by a y-dipole placed at the circle centre 
and, for a high frequency, the heave motion is represented by a z-dipole. 

t Incidentally. the imaginary part of the radiation potentials coincides, apart from a constant 
factor, with the even or odd part of the diffraction potentials. This result has some bearing on the 
construction of the  ‘inner solution’ in the slender-body theory; see Kewman (1978). 
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Before roll motion is considered it seems convenient to analyse how surge, sway 
and heave motions can be simulated for non-circular sections. Instead of starting 
with more complex geometries it is worth analysing a mild distortion of a circle, an 
ellipse for instance. In this case the focus plays the role of the circle centre and if the 
ellipse major axis is horizontal, for example, a source-sink pair placed a t  the foci 
should be used to represent the sway motion. Consider now the overall fluid flow 
induced by the motion of a rectangular or triangular cross-section. Far from the body 
the fluid flow should not be very different from that induced by the motion of an 
inscribed elliptical section, although locally the presence of sharp corners may be 
important. In order to incorporate the effect of these geometric singularities one 
observes that, in essence, what they do is to make the fluid particle ‘rotate ’ around 
them. So the effect of the corner can be simulated by a vortex point, placed within 
the body and in the corner’s vicinity. Or, in short, in the variational method 
rectangular and triangular sections can be represented by the singularities associated 
with the inscribed ellipse plus vortex points placed in the neighbourhood of sharp 
corners. More complex geometries can then be described by a convenient combination 
of rectangles and triangles, and even stronger singularities (bilge keels, for example) 
can be properly accounted for if the vortex points are placed properly. 

In  this way, a pattern can be visualized allowing one to represent any desirable 
geometry. It remains to represent the flow induced by roll motion, but here the 
choice seems obvious : the rolling of the body can be grossly represented by a vortex 
point placed a t  the geometric centre of the body ((y = 0; z = 0) for a surface-piercing 
body). 

Notice, however, that a single vortex point introduces a branch cut in the fluid 
region and consequently infinite energy with non-zero circulation. This undesirable 
situation can be avoided if a system of vortices is chosen in such a way that the 
corresponding branch cuts are placed within the body. 

For the even problems two counter-rotating vortices, with the same intensity, 
placed near the corners ( &ye ; z,,) can be used, see figure 3 (a).  In  this case the branch 
cut coincides with the dashed line - yc < y < yc. To simulate roll motion two vortices, 
with intensity - 1 and placed a t  (+yo ; zo),  can be used together with a third vortex, 
with intensity +2  and placed at (0; zo),  see figure 3 ( b ) .  Since the geometries analysed 
here are of surface-piercing type, zo = 0 was used in all numerical experiments for this 
roll-vortex system. Finally, to simulate the rotation around sharp corners in odd 
problems, the vortex system indicated in figure 3 ( c )  was used. Again, zo = 0 was taken 
here. 

Summarizing, the following four trial functionst have been introduced : (i) T’$ (y, z )  
to simulate the diffraction solution ; (ii) poles, z-dipoles and y-dipoles (or a source-sink 
pair), placed at the inscribed ellipse foci, to simulate surge, heave and sway induced 
flow; (iii) a global vortex system, placed a t  the geometric centre of the body, to 
simulate roll motion ; (iv) a local vortex system, placed a t  the corners, to simulate the 
fluid rotation around these geometric singularities. 

These functions can be identified with unbounded fluid singularities (In r ; 
y/(yz + z2 ) i ;  etc.) or else with free-surface singularities. From a computational point 
of view the first option seems to be more economical since it avoids computing the 
more complex free-surface singularities ; see, for instance, Yeung (1975) and 
Nestegard & Sclavounous (1984). In the present paper, however, deep-water free- 
surface singularities were used. In the discussion to follow, the variational 

t Given a function p(y, z )  the trial function is defined by T(y, z )  = p(y, z )  -Lo@) q+ ,  to enforce 
the essential condition (3.9). 
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FIGURE 3. Vortex point at  A ,  with branch cut and relative intensities also indicated (zo = 0 has 
been used in this work). 

approximations will be characterized by the size of the real matrix that should be 
constructed and inverted or by the singularities used (one less than the size of the 
matrix since T:(y,z) has always been used). Also, an ‘exact solution’ means a 
(10 x 10) variational approximation, obtained in the way indicated in $4.1. The non- 
dimensional frequency is given by w = Ki = 2(B/2g)$, B = beam. 

4.3. Rectangular cross-section 
Simple examples can display how an appropriate simulation of some gross flow 
features can improve the performance of the variational approximation. Table 3 
shows a ( 2 x 2 )  approximation (one singularity) for sway and roll added mass at  
frequency w = 0.25. The second column is associated with a y-dipole placed a t  the 
origin. Since this singularity simulates neither sway nor roll motions the result is poor 
for both. The third column presents the results for a sourcesink pair placed at  the 
inscribed ellipse foci. Here the sway boundary condition is well simulated and the 
improvement for the related added mass is quite evident. The fourth column presents 
the result for a vortex point at the origin, see figure 3(a ) .  Such a singularity is 
assumed to be a good representation of the roll boundary condition and the 
improvement for the related added mass is also clear. 

Similar conclusions are also true for heave motion, where a single pole at the origin 
recovers essentially the heave added mass at  frequency w = 0. ;25, see the second 
column of table 4. At high frequency, however, the same result does not hold. A 
single z-dipolet at the origin (second column; w = 2.0) gives a poor result, with an 
error close to 50% A second pole, placed a t  point M (see figure Za), does not improve 
the result for a vortex point at the origin, see figure 3 ( b ) .  Such a singularity is 
w = 2.0). The reason for this poor behaviour can be easily understood. As it is well 
known, the singularity associated with the flow around the tips of a heaving flat 
plate, in unbounded fluid (w --f a), has an important contribution to the added-mass 
computation. For a shallow rectangle (BIT = 8.0) at high frequency one should 
expect, then, that the flow around the sharp corners also becomes important. In 
order to check this a vortex point, near the corner, was used instead of M. The results 
shown in the fourth column of table 4 confirm this assumption -the error is now on 
the order of 4%, a substantial improvement. This fact seems to indicate that not 
only is the corner effect important for the heave mode, at high frequency, but also 
that the vortex point seems to be able to simulate the local feature of the flow around 
this point in a proper way. Once this local behaviour is properly simulated the 
variational method is then able to determine accurately the final result. 

It should be noticed that the (3 x 3), approximation gives a fairly good result for 
both low and high frequencies and, indeed, a similar performance is observed in the 

t A pole at  the free-surface coincides, besides a constant, with a z-dipole, for free-surface 
singularities. 
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Exact (2 x 2), (2 x 2), (2 x 2), 
Sway 0.3574 0.0594 0.3068 0.1481 
Roll 0.1405 0.0705 0.0544 0.1244 

TABLE 3. Effect of proper boundary condition simulation : (2 x 2), = y-dipole at origin; (2 x Z), = 
source-sink pair at ellipse foci (sway mode); (2 x 2), = vortex point at origin (roll mode). 
Frequency w = 0.25, rectangle with BIT = 8.0 

W Exact (2 x2), ( 3 ~ 3 ) ~  (3 x3), ( 4 x 4 )  
0.25 6.8938 6.4843 6.7250 6.5473 6.8590 
2.00 3.1715 1.8324 1.9493 3.0513 3.1966 

TABLE 4. Effect of the: proper simulation of the local flow field around a sharp corner. (2 x 2), = 
pole at origin; (3 x 3)M = pole at origin and at M ; (3 x 3), = pole at origin plus a vortex point at 
corners ; (4 x 4) = all three singularities. Rectangle with BIT = 8.0 

whole range of frequencies. A (4 x 4) approximation (last column, table 4) gives 
essentially the ‘exact’ solution. Figure 4 displays the results obtained from this 
approximation compared with Vugts (1968), for all coefficients {mjz ; djz} .  The 
agreement is excellent over the whole range of frequencies. 

4.4. Triangular cross-section 
Following the exposition of $4.2, the basic geometric reference for a triangle is the 
inscribed ellipse, with horizontal and vertical axes proportional to  beam and 
draught, respectively. As indicated in figure 2 ( b ) ,  two corners are left: one a t  (0 ;  
-2/3), with a 60’ angle, important only for odd modes; the other a t  (1  ; O ) ,  with a 
120’ angle (triangle reflected on free surface), which can play a role for very high 
frequency. 

Since the 120’ corner is not so sharp the three singularities for heave motion were 
chosen as a z-dipole a t  the origin, a pole at ellipse focus F and another a t  point M. 
For the odd problems the singularities used were a y-dipole at the ellipse focus 
(sway), a vortex point at the origin (roll) and another a t  the sharp corner, see figure 
2 ( b ) .  The results obtained from this (4 x 4) variational approximation are shown in 
figure 5 together with those of Vugts. Again, the agreement is excellent over the 
whole range of frequencies. 

4.5. Variational approximation for { T ;  R ; Ql)  
So far the variational approximation has proved powerful only for the added mass 
and radiation damping matrices. The purpose now is to show that it is equally good 
in predicting the values of the exciting forces, transmission and reflection coefficients. 

As will soon become clear, it suffices to show that the method is able to recover 
accurately the phases of ( A o , , ; A o , J .  In  fact, from ( 3 . 1 6 ~ )  it follows that 

with (4.4) 
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FIGURE 4. Comparison between (4 x 4) variational approximation (0) ,indicated in figure 2 (a) 
and Vugts' (1968) result for a rectangle (-). w = O ( B / 2 g ) z ;  B = beam. 

From ( 3 . 2 0 b , c )  one obtains also that 

where {d,,(u)} are the diagonal terms of the radiation damping matrix. Since these 
coefficients can be well determined by the variational method, see $94.3 and 4.4, and 
{ T ; R }  can be expressed directly in terms of { A o , 5 ; A o , 6 } ,  see (3.6), it remains to 
determine the phases 2@*. 

Vugts (1968) used a different formulation and the coefficients Ao,5  and Ao,6 were 
not computed by him. Thus, a (10 x 10) numerical solution, as indicated in table 2, 
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FIGURE 5. Comparison between a (4 x 4 )  variational approximation (0 )  iydicated in figure 2 ( b )  
and Vugts’ results for an equilateral triangle (-). w = d(B/2g)r; B = beam. 

FIGURE 6. A (4 x 4) variational approximation (0) for the phases of and Ao,e indicated in 
figure 2(a),  yompared with the (10 x 10) solution, table 2 (-), for a rectangle with B/T = 8.0. 
o = cS(B/2g)r, B = beam. 

was used as a paradigm to test the variational approximation. As shown in figure 6, 
the (4 x 4) variational approximation recovers the phases of A,,5 and A,,6 - and so 
also the exciting forces, transmission and reflection coefficients - in the whole range 
of frequencies. 

5. Conclusion 
A variational method is developed in this paper where the relevant hydrodynamic 

coefficients (linear and nonlinear exciting forces, added mass and radiation damping 
matrices, far-field wave amplitude, drift force coefficients, etc.) are all expressed as 
stationary values of well-defined functionals. I n  this context they can be computed 

0 FLM 2W 
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in a similar way to which natural frequencies are computed by means of a Rayleigh 
quotient. As a consequence, a relatively crude approximation for the potentials can 
provide a much better approximation for the hydrodynamic coefficients. 

As usual in variational methods (Rayleigh quotient, for example) good results can 
be obtained with few trial functions only if these functions simulate properly the 
overall behaviour of the correct solution. In  this paper, combinations of simple trial 
functions have been introduced in such a way that they can properly simulate the 
overall fluid flow around an arbitrary geometry. The numerical results obtained were 
excellent : with a (4 x 4) symmetric real matrix all linear hydrodynamic coefficients, 
referring to two rectangles (BIT = 2.0; 8.0) and one triangle, were recovered over the 
whole range of frequencies. 

Much more numerical work, however, is needed to make this method fully 
operational. On one hand, the use of unbounded fluid singularities, which is more 
economical than the standard Green-function method (see Yeung 1975 ; Nestegard & 
Sclavounous 1984), must be tested in the present variational method. The discussion 
on 884.2 and 4.3 seems to indicate that they should work as well as free-surface 
singularities although with a greater computational efficiency (they are much simpler 
to  be computed). Also the method itself, together with convenient trial functions, 
must be implemented to  solve three-dimensional problems. The theory is the same 
but the details must be worked out. 

There have been some initial applications of this method to nonlinear problems, 
which deserve some comments here. Aranha & Pesce (1987) have used it to estimate 
the effect of the second-order potential on the slow drift force acting upon a 
submerged body. Only one trial function was used then but the results appear to be 
qualitatively correct. Also, in the analysis of the nonlinear resonant response of a 
submerged body excited by trapped waves, a nonlinear radiation damping term 
appears. This coefficient can be also determined by a variational method, see Aranha 
(1988), and with the use of a single trial function it could be shown that this term is 
small for a relatively deep submerged body. 

The multi-body interaction problem has also been analysed by Pesce (1988) and an 
extension of the present theory to related problems seems to be straightforward. For 
example, a problem that could be dealt with is the hydroelastic interaction between 
a ship hull and water waves. Also, besides some theoretical advantages, the 
variational method may become practically important: it can make it feasible to 
implement, in an efficient way, the hydrodynamic computation as a routine in a 
personal microcomputer. The numerical results shown here have been obtained using 
a standard 16-bit personal microcomputer. 

This work has been supported, in part, by CNPq-Conselho Nacional de 
Desenvolvimento Cientifico e Tecnol6gico, proc. no. 304062-85, MCT-Ministdrio de 
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